Basic geometry and applied mathematics used in the analysis
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The location of point ‘P’ results from the combiredation of the ring from point ‘O’,

about the Spin axis by degreesnd about the Tilt axis b¥ degrees.
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The above three orthogonal views show the locwspadint ‘P’ on the ring as it simultaneously
spins and tilts.

[For clarity, only the first 180 of the locus of point ‘P’ as it moves from poifit ‘are shown in
the above three views.]



For pure spin at wyin rads/sec, without tilting of the spinning ring ((eiir = 0 and @=0),
Displacementsdx = R.(1 - Cos @spint)) = R.(1 - Co9p)), &y = R.Sin@),z=0

Speed, dx/dt =xpin.R.Sin @spint) and dx/® = -wspin.R.SiNE)
Acceleration, &/df® = -tspin’.R.COS (spint) and dx/d@” = -wspin’.R.C0OSO)

For spin at wyin rads/sec, with simultaneous tilting (it = C.wypin and @= C.0),

In plane of spin, displacemen; = R.(1 - Cos@spint)) = R.(1 - Cogp)), dy = R.SinE).Cos(p),
[Program line 110]
and_Normalo plane of spin, displacemedt, = R.Sin@).Sin(@) = R.Sin@).Sin(CO)

Speed, dz/@ = wsinR.[C0sP).SIN(CO) + C.Sin@E).Cos(CO)]
=wspinR.[C0SE).Sin(@ + C.Sin@).Cos(p)] [Program lines 110 & 120]
Acceleration, &z/d0? = wspir’.R.[-Sin@).Sin(@) + 2.C.CosP).Cos(p) — C2.Sin©).Sin®)]
{by product rule, dz®= u.dv/d + v.du/d}
[Program line 130]
Parallelto plane of spin, displacemendk = R.(1 - Cos))
[Programline 230]
Speed, dx/@ = -0xpin.R.SiNE)
Acceleration, &/d®” = -txpi’.R.C0OSE)
[Program lines 240 & 250]

The BASIC numerical integration program, ‘GyroToegut’, considers a spinning ring of mean
radius, R, and mass, M, to be made up of a disorgteer of elements, I, each element having a
length of 2rtR/lI and a masgM = M/I.

The above accelerations are calculated at eacbfengry element, and then averaged to give the
accelerations at the centroid of each element, botimal to and parallel to the plane of spin.

By Newton’s Second Law, the forces associated thitise two accelerations at the centroid of each
element are calculated, given &fy = (OM x Acceleration).

[Program lines 140 & 260]
By calculating x and z offset distances, R.@)s{nd R.Sin®).Sin() respectively, of every element
from the centre of the ring as the ring spins dtsl the resulting moment (&F x Offset) about the
third (y) axis can then be calculated for everyredat of the whole ring.

[Program lines 150 & 270]
All of these elemental moments about the thirdcgr) then be summed for the whole ring to
give a calculated value for the gyroscopic tordug,, about the gyroscopic precession axis.

[Program lines 160 & 280]

The result of this numerical integration calculataf the gyroscopic torque can then be directly
compared with the formula-derived value of Cuir.R>.



It is readily evident that the two results arextremely close agreement, especially when a large
number of integration elements are employed andhvahamall value of C is applied, the ratio of tilt
speed to spin speed. The fact that the two reatdtsery slightly different points to the fact

that both the formulae-derived value and the nuradyi integrated value are only approximate.

The two values are approximate in different wayséncer, as follows:

The approximation inherent in the numerically imeggd value is due to the fact that a discrete mumb
of elements are used, whereas the approximatia@renhin the formula-derived value is due to tha fa
that the non-linearity associated with higherdgeeds is ignored.

Furthermore, the foregoing methodology can be coseld and expressed, after multiplication and
substitution, to give the following expression foe total gyroscopic moment:

Toyro = Mypinin.R2. [* Cos@).[2.Cos@).Cos(CO) — C.Sin@).Sin(CO)]dO
0

Using the above expression fay,4, a separate simplified numerical integration paogr‘Integral.txt’,
has been constructed in which the above definiegnal betweeni2and zero, representing the full
360 rotation of the ring, is evaluated.

The numerical result of this integration term isyvelose to 1.000, thus nominally corroborating the
familiar formula, Tyro = M.cospin.cqm.RZ, for the resulting value of gyroscopic torque.

It is probable that this expression tends to irggto an exact value tfas the number of

integration elements tends towardsand as theoir/wspin) Speed ratio, C, tends towards zero,
although this assertion has not yet been rigorocmigoborated by pure mathematics.

In reality though, some degree of tilt speed miwgags exist in order that a gyroscopic torque
arises and therefore, the real value of this coeffit will never be exactly equal 19 but will
always be slightly less thdn

Consequently, it follows that the old familiar tédok formula for gyroscopic torque,

Tayro = M.Gspin0it.R?, can never be perfectly accurate.

It is recommended that the assertions implicitis paper be practically corroborated by
experimental measurements of the value of gyrosdopgue developed for various
values of C, the angular speed ratiii(tspin)-



